Abstract
In this study, the temperature distribution in the cutting zone was determined by integrating thermal analytical and simulation models of orthogonal cutting process with uncoated and coated carbide tools. Primarily, 2D FEM simulations were run to provide numerical solutions of temperatures occurring at different points through the chip/tool contact region and the coating/substrate boundary under defined cutting conditions. In addition, an analytical model for heat transfer in the cutting tool and its partitioning, proposed in References [W. Grzesik, P. Nieslony, Physics based modelling of interface temperatures in machining with multilayer coated tools at moderate cutting speeds, Int. J. Mach. Tools Manufact. 44 (2004) 889–901; W. Grzesik, P. Nieslony, A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools, Int. J. Mach. Tools Manufact. 43 (2003) 1311–1317], was employed to generate the input data to computations of the tool–chip interface temperature. The changes of the temperature distribution fields resulting from varying heat flux transfer conditions are the main findings of the FEM simulations. Finally, the analytically and numerically predicted average temperatures were validated against the tool-work thermocouple-based measurements and discussed in terms of relevant literature data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.