Abstract
Staphylococcal plasmids of the pT181 family replicate by a rolling circle mechanism, requiring the activities of a plasmid-specified Rep protein. The initiation event involves site-specific phosphodiester bond cleavage by Rep within the replication origin, ori. In vitrothe Rep proteins also display type-I topoisomerase activity specific for this plasmid family. Although the single site of bond cleavage, ICR II, is conserved among all members of the pT181 family, the plasmid-specific Rep proteins are able to discriminate between family members in vivo, initiating replication only from the cognate origin. The basis of such specificity is believed to be due to a non-covalent binding interaction between Rep and a DNA sequence adjacent to the site of phosphodiester bond cleavage. Using the RepD protein specified by plasmid pC221, we present data for the physical parameters of RepD: oriDcomplex formation. Quantification of the relative strengths of the non-covalent interactions for different but related oritarget sequences, measured by gel mobility shift experiments, has yielded data that are in accord with the known specificity of the protein in vivo. Oligonucleotide competition experiments demonstrate that this interaction is indeed attributable to the specificity determinant, ICR III. Protein-DNA crosslinking methods show that a carboxyl-terminal proteolytic fragment of RepD makes a specific interaction with the ICR III region of its cognate replication origin. Analysis of topoisomerase rates indicates that the interaction between ICR III and the carboxyl terminus of the protein is required before a productive interaction, namely the phosphodiester bond cleavage at the ICR II, can occur.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have