Abstract

A gas chromatography mass spectrometric method using negative chemical ionisation was developed for the determination of stable isotopes of selenium for evaluation of selenium absorption and retention from foods in humans. The method involves an acid digestion to convert all selenium into selenite, which subsequently reacts with 4-nitro- o-phenylene-diamine to form a volatile piazselenole. The piazselenole, after extraction into an organic solvent, was analysed for its isotopic selenium composition by gas chromatography mass spectrometry. Negative chemical ionisation is reported for the first time for the determination of selenium stable isotopes and its analytical characteristics were compared to those of electron impact mass spectrometric ionisation, classically used for the determination of selenium. The negative chemical ionisation technique allowed accurate determination of total selenium by isotope dilution and of selenium isotope ratios in biological samples. The repeatability for total selenium and for stable isotope ratios was good (R.S.D.≤10%) within the range of 50 to 250 ng selenium. The detection limit for the investigated selenium isotopes was approximately 1 pg (signal to noise ratio at 3). The applicability of the developed stable isotope methodology was demonstrated by the determination of the selenium absorption and retention from foods in a pilot study using one human adult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.