Abstract

An on-line scandium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry associated with flow injection was studied. Trace amounts of scandium were preconcentrated by sorption on a minicolumn packed with oxidized multiwalled carbon nanotubes, at pH 1.5. The retained analyte was removed from the minicolumn with 30% (v/v) nitric acid. A total enrichment factor of 225-fold was obtained within a preconcentration time of 300s (for a 25mL sample volume). The overall time required for preconcentration and elution of 25mL of sample was about 6min; the throughput was about 10 samples per hour. The value of the detection limit was 4ngL−1 and the precision for 10 replicate determinations at 100ngL−1 Sc level was 5% relative standard deviation, calculated from the peak heights obtained. The calibration graph using the preconcentration system was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 10mgL−1. After optimization, the method was successfully applied to the determination of Sc in an acid drainage from an abandoned mine located in the province of San Luis, Argentina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.