Abstract

The roughness length for momentum (z0m), zero-plane displacementheight (d), and roughness length for heat (z0h) are importantparameters used to estimate land-atmosphere energy exchange. Although many different approaches have been developed to parameterizemomentum and heat transfer, existing parameterizations generally utilizehighly simplified representations of vegetation structure. Further, a mismatch exists between the treatments used for momentum and heat exchange and those used for radiative energy exchanges. In this paper, parameterizations are developed to estimate z0m, d, and z0h for forested regimes using information related to tree crown density and structure. The parameterizations provide realistic representationfor the vertical distribution of foliage within canopies, and include explicit treatment for the effects of the canopy roughness sublayer and leaf drag on momentum exchange. The proposed parameterizationsare able to realistically account for site-to-site differences in roughness lengths that arise from canopy structural properties.Comparisons between model predictions and field measurements show good agreement, suggesting that the proposed parameterizations capture the most important factors influencing turbulent exchange of momentumand heat over forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.