Abstract
Braking resistor is known to be a very powerful tool for transient stability improvement in electric power systems. Usually, in a large power system braking resistors are placed at each generator terminal bus which requires a high installation as well as operation cost. Also, heavy computation is required for the controllers used for the switching of the resistors. From these viewpoints, this paper directs to the study of installation of reduced number of fuzzy logic controlled braking resistors at suitable locations for transient stability enhancement. Groups of coherent generators in the power system are determined. Then one braking resistor is installed in each of the coherent group and at each of the remaining generator terminal bus. Thus, the number of braking resistors is reduced and hence the installation and operation cost as well as computational burden for the controllers are minimized. The suitable location for the braking resistor in each coherent group of generators is determined according to the values of the transient stability index as calculated for a 3LG (Three-phase-to-ground) fault at the points near the generators of the coherent group without considering the braking resistors in the system. The effectiveness of the proposed method is demonstrated through EMTP simulations for the IEEJ West-10 machine model system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.