Abstract

The purpose of this study is to determine the Pipe Whip Restraint (PWR) location that would prevent the formation of a plastic hinge due to secondary effects of a postulated pipe break load in a high energy line(1). The prevention of a plastic hinge formation at the PWR location is important since its secondary effects could lead to additional interactions with safety related equipment, structure, and component that are essential to safely shutdown the nuclear power plants. The proper location of the PWR can be found by using the relationship between bending moment-carrying capacity of the pipe and the applied thrust force. Several closed-form solutions obtained from several literatures were studied and used to calculate bending moment-carrying capacities of a piping system and ultimately used to determine a plastic hinge length. The plastic hinge formation is also determined analytically by using the Finite Element Analysis (FEA) method. ANSYS LS-DYNA® [8] Explicit Finite Element code is used in modeling the pipe whip models, which includes the piping system and pipe whip restraint. Comparisons are made between the analytical (FEA) results and the results from several closed-form solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.