Abstract
Phthalic acid esters (PAEs) or phthalates are endocrine-disrupting chemicals and among the most frequently detected hydrophobic organic pollutants, which can be gradually released from consumer products into the environment (e.g., water). This study measured the equilibrium partition coefficients for 10 selected PAEs, with a wide range of logarithms of the octanol-water partition coefficient (log Kow) from 1.60 to 9.37, between poly(dimethylsiloxane) (PDMS) and water (KPDMSw) using the kinetic permeation method. The desorption rate constant (kd) and KPDMSw for each PAEs were calculated from kinetic data. The experimental log KPDMSw for the PAEs ranges from 0.8 to 5.9, which is linearly correlated with log Kow values up to 8 from the literature (R2 > 0.94); however, it slightly deviated for the PAEs with log Kow values greater than 8. In addition, KPDMSw decreased with the temperature and enthalpy for PAEs partitioning in PDMS-water in an exothermic manner. Furthermore, the effects of dissolved organic matter and ionic strength on the partitioning of PAEs in PDMS were investigated. PDMS was used as a passive sampler to determine the aqueous concentration of plasticizers in river surface water. The results of this study can be used to evaluate the bioavailability and risk of phthalates in real environmental samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have