Abstract
ObjectivesDespite extensive clinical use, limited data are available on optimal loading and maintenance doses of vancomycin in critically ill patients. This study aimed to develop a rational approach for optimised dosage of vancomycin given in a continuous infusion in critically ill patients. MethodsVancomycin pharmacokinetic (PK) data (total serum concentrations) were obtained from 55 intensive care unit (ICU) patients (Bach Mai Hospital, Hanoi, Vietnam) receiving a 20 mg/kg loading dose followed by continuous infusion stratified by creatinine clearance (CLCr). Population PK modelling and Monte Carlo simulations were performed using a nonlinear mixed-effects modelling (NONMEM) program for a target of 20–30 mg/L to optimise efficacy and minimise nephrotoxicity. ResultsA two-compartment model with first-order elimination best fitted the PK data with central and peripheral volumes of distribution of 1.01 and 2.39 L/kg, respectively (allometric scaling to a 70 kg standard subject). The population total clearance of 3.63 L/h was only explained by renal function in the covariate and final model. The simulations showed that a 25-mg/kg loading dose infused over 90 minutes was optimal to reach the target range. The optimal maintenance dose for low renal function (CLCr < 45 mL/min) was 1000–1500 mg/day. For augmented renal clearance (CLCr > 130 mL/min) the dose should be up to 3500 mg/day or even 4500 mg/day to achieve adequate exposure. These simulated maintenance doses were larger than previously proposed for non-ICU patients. ConclusionLarge loading and maintenance doses of vancomycin are generally needed in critically ill patients. Because of high interindividual variability in vancomycin PK, drug monitoring may still be necessary.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have