Abstract

The prototype ferredoxin maquette, FdM, is a 16-amino acid peptide which efficiently incorporates a single [4Fe-4S]2+/+ cluster with spectroscopic and electrochemical properties that are typical of natural bacterial ferredoxins. Using this synthetic protein scaffold, we have investigated the role of the nonliganding amino acids in the assembly of the iron-sulfur cluster. In a stepwise fashion, we truncated FdM to a seven-amino acid peptide, FdM-7, which incorporates a cluster spectroscopically identical to FdM but in lower yield, 29% relative to FdM. FdM-7 consists solely of the. CIACGAC. consensus ferredoxin core motif observed in natural protein sequences. Initially, all of the nonliganding amino acids were substituted for either glycine, FdM-7-PolyGly (.CGGCGGC.), or alanine, FdM-7-PolyAla (.CAACAAC.), on the basis of analysis of natural ferredoxin sequences. Both FdM-7-PolyGly and FdM-7-PolyAla incorporated little [4Fe-4S]2+/+ cluster, 6 and 7%, respectively. A systematic study of the incorporation of a single isoleucine into each of the four nonliganding positions indicated that placement either in the second or in the sixth core motif positions,.CIGCGGC. or.CGGCGIC., restored the iron-sulfur cluster binding capacity of the peptides to the level of FdM-7. Incorporation of an isoleucine into the fifth position,.CGGCIGC., which in natural ferredoxins is predominantly occupied by a glycine, resulted in a loss of [4Fe-4S] affinity. The substitution of leucine, tryptophan, and arginine into the second core motif position illustrated the stabilization of the [4Fe-4S] cluster by bulky hydrophobic amino acids. Furthermore, the incorporation of a single isoleucine into the second core motif position in a 16-amino acid ferredoxin maquette resulted in a 5-fold increase in the level of [4Fe-4S] cluster binding relative to that of the glycine variant. The protein design rules derived from this study are fully consistent with those derived from natural ferredoxin sequence analysis, suggesting they are applicable to both the de novo design and structure-based redesign of natural proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.