Abstract

HighlightsMoisture sorption isotherms of rice and husk flour composites were determined.Adsorption isotherms were best modeled by the Chung-Pfost and Oswin equations.Desorption isotherms were best modeled by the Polynomial and Chung-Pfost equations.The Modified Oswin model was the best for both adsorption and desorption.Abstract. Empirical models describing isotherms specifically for adsorption and desorption have not been described for rough rice and husk flour composites. Such models are vital for process control and monitoring operations which use rice husk and rice flours or their mixtures for food or material processing. The current study was undertaken to determine the moisture sorption isotherms of rice husk flour, rough rice flour and their mixtures subjected to different temperature levels. Effects of rice husk flour to rough rice flour ratio of 0:1 (0.0%), 1:49 (2.0%), 1:16 (5.9%), and 1:0 g/g (100.0%) on rough rice moisture isotherms at temperature levels of 20°C, 40°C, and 60°C were investigated. The dynamic dewpoint isotherm technique (DDI) was used to generate accurate isotherms. Several empirical models were tested to fit the experimental EMC data. All the isotherms showed typical sigmoidal type 2 shapes. The equilibrium moisture content (EMC) over equilibrium relative humidity (water activity) ranging from 10% to 95% showed temperature dependence. Hysteresis was evident for all samples, with a decreasing level at a higher temperature. Rice husk flour to rough rice flour ratio, as a factor, showed a significant effect on the EMC of rough rice. The EMC decreased with an increase in rice husk flour levels. Chung-Pfost and Oswin were the two best models for describing adsorption isotherm, and Polynomial and Chung-Pfost were the best models for fitting the desorption isotherm. Modified Oswin model was the best model amongst the two-variable models for describing both adsorption and desorption isotherms. Keywords: Empirical models, Equilibrium moisture content, Rice husk flour, Rough rice flour, Sorption isotherms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call