Abstract
Adsorption and desorption experiments were carried out on rough rice and brown rice (Nampyung) at 5, 15, 25, 35, <TEX>$45^{\circ}C$</TEX> for moisture contents between 8.7 and <TEX>$25\%$</TEX> (db). The method employed was to measure the equilibrium relative humidity (ERH) of air in contact with the grain under static conditions, using an electronic hygrometer The effects of temperature and moisture contents were investigated, and the measured values were fitted to the modified Henderson, the modified Chung-Pfost, the modified Halsey and the modified Oswin model. The ERHs of rough rice and brown rice decreased with an decrease in moisture content and temperature, and the effects of temperature was no significant at moisture content of <TEX>$25\%$</TEX> (db). Equilibrium moisture content (EMC) of brown rice was higher than rough rice at same temperature and relative humidity. Desorption EMC is higher than the adsorption, but there is no significant difference between desorption and adsorption EMC in moisture content near <TEX>$25\%$</TEX> (db) at rough rice and near 9, 21 and <TEX>$25\%$</TEX> (db) at brown rice. The modified Oswin model was the best in describing the adsorption EMC and the modified Chung-Pfost model was the best in describing the adsorption ERH of rough rice. The modified Oswin model was the best in describing the adsorption EMC/ERH of brown rice. The modified Chung-Pfost model was the best in describing the desorption EMC/ERH of rough rice and brown rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.