Abstract

Polyamides are known to absorb and desorb water to establish an equilibrium with their environment. Water uptake by diffusion leads to a drastic reduction in the strength and stiffness of the material, which is referred as the water-induced plasticizing effect. This effect leads to a shift of the glass transition region towards lower temperatures what can be determined by differential scanning calorimetry (DSC). However, a determination of the glass transition temperature Tg is not accurate in samples with inhomogeneous moisture distribution before an equilibrium is reached by diffusion and Tg is superimposed by water-specific effects. It is shown that the glass transition can be measured by StepScan DSC even with inhomogeneous moisture distribution within the sample. In addition, a method is developed and validated which uses the low thermal conductivity and the shift of Tg to detect a water-saturated sample boundary layer in inhomogeneously conditioned PA 6 samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.