Abstract

Determination of mobility edge in presence of metal-to-insulator transition Recombination dynamics of excitons was studied in multiple narrow quantum well GaAs/AlGaAs heterostructures. Disorder generated by interface roughness considerably affects transport of the conduction band electrons and at appropriate quantum well width results in a metal-to insulator transition. Localization of the electrons was found to be responsible for the exciton recombination time measured in the vicinity of the metal-to-insulator transition. Measurement of the exciton recombination time as a function of the energy allowed for determination of the critical energy of the mobility edge attributed to the conduction band electrons. The mobility edge energy obtained in this way demonstrates intersection with the Fermi level energy at the critical disorder corresponding to the metal-to-insulator transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.