Abstract

The determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measure in situ using conventional hydrogeological methods, and their temporal changes associated with coal mining are not well understood. The response of well water level to Earth tides provides a unique probe to determine the in situ hydrogeological parameters and their variations. In this study, the tidal responses of well water level were employed to characterize the changes in hydrogeological parameters of the overburden aquifer induced by longwall mining in a coalfield, northwest China. Based on the long-term hourly recorded water level data, two analytical models were used to determine the temporal changes of permeability and specific storage of the overburden aquifer. The results showed that the hydrogeological parameters changed with the longwall coal face advance. When the longwall coal face approached the wells, the aquifer permeability increased several to dozens of times, and the response distance ranged from 80 m to 300 m. The specific storage decreased before the coal face reached wells and recovered after the coal face passed. The results of this study indicate that the hydrogeological parameter changes induced by coal mining are related to the location of the well relative to the coal face and the stress distribution in the overburden aquifer. This study revealed the changes in permeability and specific storage associated with the mining disturbance which could have great significance for quantitative assessment of the impact of mining on overburden aquifer.

Highlights

  • Underground coal mining could change the structure and properties of the overburden aquifers due to surrounding rock stress changes and cause deformation which results in subsidence or settlement of the ground surface

  • We focused on the tidal response at the frequency of M2, which has relatively large signal-to-noise ratios, and it is less affected by barometric loading

  • We use the method of the tidal response of well water level to explore the changes in hydrogeological parameters of the overburden aquifer in the mining area

Read more

Summary

Introduction

Underground coal mining could change the structure and properties of the overburden aquifers due to surrounding rock stress changes and cause deformation which results in subsidence or settlement of the ground surface. High-intensity groundwater pumping and draining as well as strong mining vibration during the mining processes may cause the clogging or unclogging of fissures/fractures in aquifers and the resultant hydrogeological property changes. The hydrogeological parameters (e.g., permeability and specific storage) can be used as an indicator of the deformation of the aquifer associated with mining activities. Groundwater flow in the overburden aquifer during longwall mining is governed by a complex interaction between roof caving and ground subsidence, pore pressure, and permeability changes and is influenced by in situ geological and hydrogeological conditions [2].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call