Abstract

The application of nautical X-Band radars to measure internal wave (IW) properties is investigated. A methodology based on the use of Radon transform (RT) techniques to detect internal wave related features from backscatter image sequences is introduced to compute properties such as direction of propagation, non-linear velocity ( c 0), distance between solitons ( L cc ) and number of solitons per packet. The proposed methodology was applied to several events recorded by a ship-mounted X-Band radar system (WaMoS) during the NLIWI experiment in 2006. Results from the comparisons to simultaneous measurements taken at neighboring oceanographic moorings indicated that c 0 can be estimated with a RMS error of 0.06 m s −1, which corresponds to a mean relative error of −1.4%. Similarly, L cc can be estimated with a RMS error of 98 m, which is associated with a mean relative error of 14.6%. This latter error estimate however is likely to be overestimated, because it reflects strongly the separation between sampling stations as L cc was shown to be highly dependent on propagation distance. The accuracy of the results shows that X-Band systems are well suited to measure internal wave properties offering some advantages over SAR and other in situ devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.