Abstract
Atomic force microscopy (AFM) was used to measure single interaction forces between corrole (host) and phenol derivatives (guests) in aqueous media. A gold tip was modified with thiol derivatives of corrole via the Au–S covalent bond. Such a tip was used to measure adhesion forces with a planar gold substrate modified with thiol derivatives of phenol and ortho-nitrophenol in aqueous solutions. The mean force between the corrole and ortho-nitrophenol was higher than that between corrole and phenol, probably reflecting stronger hydrogen bond interaction in the former complex. In the presence of a supporting electrolyte (0.1 M K2SO4), the mean force increased, suggesting that electrostatic and π–π interactions play an essential role in the adhesion force. In addition, the adhesion force measured at pH 6.0 was larger than that at pH 10, reflecting the electrostatic repulsion at the higher pH. These behaviours are consistent with the potentiometric responses of a liquid membrane based on corrole to phenolic compounds. Also, the values of forces for the interaction between corrole and phenol derivatives showed the same tendency as energy calculated for these complexes. The Poisson method was used for the calculation of the single force of the chemical bond between the corrole host and the phenolic guests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.