Abstract

This work aimed to correct the integral turbulence model developed earlier for assemblies of smooth rods. Two variants of the fuel assembly design were considered. In the first variant, the fuel rods were spaced using spacer grids. The presence of a spacer grid does not require a change in the form of the system of equations but leads to a change in the form of the resistance tensor and the generation of turbulence in the spacer grid region. In the second variant, a wire-wrapped fuel bundle was analyzed. The presence of a wire-wrapped fuel bundle requires an additional term in the equation for the conservation of momentum and change in the form of the resistance tensor. The simulations were obtained by CFD code ANSYS CFX and aimed at the determination of parameters involved in an integral model of turbulence being developed for modeling nuclear-reactor cores and heat exchangers in anisotropic porous-body approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.