Abstract
An experimental approach employing temperature and concentration gradients is presented that is suitable for determining impurity diffusion coefficients in a single experimental cycle. The Al-Cu system is used to illustrate the feasibility of the method. In a single phase α-Al solid solution, concentration gradients are generated by exposing a cylindrical sample to steep temperature gradients and by annealing until the initially formed mushy zone is re-solidified. The annealing is performed such that a symmetric, ramp shaped profile in the form of a roof is generated. The sample is then again exposed to a temperature gradient at somewhat lower temperatures for an extended time period. The symmetric profile then becomes asymmetric due to the varying diffusion coefficient along the sample. Information on the pre-exponential factor D0 and the activation energy for diffusion QD is retrieved from the asymmetry of the resulting concentration profile. The asymmetry becomes increasingly pronounced with longer diffusion times, yielding an increasing accuracy of the diffusion coefficients. The experimental approach is generally applicable to alloy systems with finite solubility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.