Abstract

A novel flow cell reactor was developed for micro-flow injection determination of hydrogen peroxide (H(2)O(2)) using horseradish peroxide (HRP)-catalysed luminol chemiluminescence. The newly developed flow cell reactor for a chemiluminometer allowed mixing of the chemiluminescent reagents in front of a photomultiplier for maximum detection of the emitted light. The rapid mixing allowed a decrease in the flow rate of the pump to 0.1-0.01 mL/min, resulting in increased sensitivity of detection of light. The flow cell reactor was made by packing HRP-immobilized gels into a flow cell (Teflon tube; 6 cm x 0.98 mm i.d.) located in the cell holder of a chemiluminometer (flow-through type). The HRP-immobilized gels were made by immobilizing HRP onto the Chitopearl gel by the periodate method. H(2)O(2) specimens (50 microL) were injected into a stream of water delivered at a flow rate of 0.1 mL/min and mixed with a luminol solution (0.56 mmol/L in Tricine buffer, pH 9.2) delivered at 0.1 mL/min in the flow cell reactor. Within-run reproducibility of the assay of H(2)O(2) was 2.4% (4.85 micromol/L; flow rate 0.1 mL/min, injection interval 10 min). The reproducibility of the H(2)O(2) assay was influenced by the flow rates and the injection intervals of the H(2)O(2) specimens. As the flow rates decreased, both the light intensity and the light duration increased. Optimal light intensity was obtained at a luminol concentration of 3-8 mmol/L, but 0.56 mmol/L was sufficient for assay of H(2)O(2) in clinical specimens. At a luminol concentration of 0.56 mmol/L, the regression equation of the standard curve for H(2)O(2) (0-9.7 micromol/L) was Y = 27.5 X(2) + 394 X + 58.9 (Y = light intensity; X = concentration of H(2)O(2)) and the detection limit of H(2)O(2) was 0.2 micromol/L. This method was used to assay glucose (2.7-16.7 mmol/L) based on a glucose oxidase (20 U/mL, pH 7.4) reaction. The standard curve for glucose was Y = 167 X(2) - 351 X + 1484 (Y = light intensity; X = glucose). The within-run reproducibility for an aqueous glucose standard (2.7 mmol/L) and a control serum (glucose, 5 mmol/L) was 4.48% (n = 5) and 5.70% (n = 9), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.