Abstract

This work investigates the effect of flow rate variation on mass transfer and on the development of Escherichia coli biofilms on a flow cell reactor under turbulent flow conditions. Computational fluid dynamics (CFD) was used to assess the applicability of this reactor for the simulation of industrial and biomedical biofilms and the numerical results were validated by streak photography. Two flow rates of 374 and 242 L h(-1) (corresponding to Reynolds numbers of 6,720 and 4,350) were tested and wall shear stresses between 0.183 and 0.511 Pa were predicted in the flow cell reactor. External mass transfer coefficients of 1.38 × 10(-5) and 9.64 × 10(-6) m s(-1) were obtained for the higher and lower flow rates, respectively. Biofilm formation was favored at the lowest flow rate because shear stress effects were more important than mass transfer limitations. This flow cell reactor generates wall shear stresses that are similar to those found in some industrial and biomedical settings, thus it is likely that the results obtained on this work can be used in the development of biofilm control strategies in both scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.