Abstract

We developed an electrochemical microalgal bioassay for the determination of heavy metal toxicity in water on the basis of the alkaline phosphatase (ALP) enzyme inhibition of Chlamydomonas reinhardtii. Five heavy metals were chosen as toxicants: Hg, Cd, Pb, Zn, and Cu. The induced ALP activity of C. reinhardtii was inhibited using the phosphate starvation method, and the results were evaluated by measuring the electrochemical oxidation of p-aminophenol (PAP) following the enzymatic conversion of p-aminophenyl phosphate (PAPP) as a substrate. The rapid determination of enzymatic activity was achieved using hydrodynamic voltammetry in a 50 μL micro-droplet with a rotating disk electrode (RDE). Enzymatic activity over a PAPP substrate is affected by heavy metal ions, and this phenomenon decreases the chronoamperometric current signal. The concentrations of Hg, Cd, Pb, Zn, and Cu in which the ALP activity was half that of the control (EC50) were found to be 0.017, 0.021, 0.27, 1.30, and 1.36 μM, respectively. The RDE system was demonstrated to be capable of detecting enzymatic activity by using a small amount of regent, a reaction time of only 60 s, and a detection limit of 5.4 × 10−7 U.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.