Abstract

AbstractParticular HLA class II allelic sequences are associated with susceptibility to type I diabetes. To understand the mechanism, knowledge of the molecular nature of the specific TCR/peptide/class II interactions involved in the disease process is required. To this end, we have introduced the diabetes-associated human class II HLA-DQ8 allele (DQA1*0301/DQB1*0302) as a transgene into mice and analyzed T cell responses restricted by this molecule to an important Ag in human diabetes, human glutamic acid decarboxylase 65. Hybridomas were used to determine the particular peptides from this Ag presented by HLA-DQ8 to T cells and to map the core minimal epitopes required for T cell stimulation. Analysis of these core epitopes reveals a motif and relevant features for peptides that are immunogenic to T cells when presented by HLA-DQ8. The major immunogenic epitopes of glutamic acid decarboxylase 65 do not contain a negatively charged residue that binds in the P9 pocket of the HLA-DQ8 molecule. PBMC from HLA-DQ8+ diabetic and nondiabetic individuals respond to these peptides, confirming that the mouse model is a useful tool to define epitopes of autoantigens that are processed by human APC and recognized by human T cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.