Abstract
Methods for calculation of design loads for high-speed vessels are investigated. The influence of operational restrictions on design loads is emphasized. Relevant operational criteria for high-speed displacement vessels are discussed. Procedures and criteria for numerical calculation of operational limits are incomplete and should be further investigated. Operational limits and design loads for a 60 m catamaran are calculated on the basis of linear strip theory. Non-linear effects on design loads are assessed from calculations in regular waves. Simplified formulae commonly used by classification societies for prediction of operational limits seem to over-predict the reduction of motions and wave loads at reduced speed. When operational limits typically given by the shipmaster or the operator are used, the design loads found by direct calculations are comparable with design loads given by classification societies. For vertical bending moment and torsion, the use of active foils is found to increase the linear loads. Owing to reduced motions, the foils reduce the non-linear loads and hence the total loads. The effect of non-linear horizontal loads is not investigated but can be important for transverse bending moment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.