Abstract
Vertical bending moment (VBM) is of crucial importance in ensuring the survival of vessels in rough seas. With regard to conventional vessels, wave-induced maximum VBM is normally considered to be experienced in head seas. It is conservative to determine the extreme VBM based on either numerical simulations or model tests in long-crested head seas. Extensive model tests have been conducted in head seas with focus on the nonlinear vertical responses in severe seas, and the measured results were compared with numerical calculations for validation. Unexpected phenomena, however, were observed during the model tests of an ultra-large containership. The maximum sagging and hogging VBMs were encountered in oblique seas. Furthermore, the significant wave height used in oblique seas was even smaller than that used in head seas. The nonlinear vertical load effects in oblique seas require further investigations for this particular vessel. Limited experimental results in oblique seas have been reported, in which the lateral responses were always more concerned than the vertical responses. Up to now, rare systematic comparisons of the nonlinear vertical responses between head and oblique seas have been published, especially when the hydroelastic effects are also accounted for. A 13000-TEU ultra-large containership model, which was designed by Hyundai Heavy Industries (HHI), has been tested in the towing tank and the ocean basin at the Marintek center in Trondheim. The experimental results in regular waves are first compared between head and oblique seas. The statistical characteristics of the VBM amidships under nineteen irregular wave conditions are then investigated. Next, the extreme hogging and sagging VBMs are compared under different wave conditions with focus on the extreme hogging VBMs. At the end of the paper, the uncertainties in the experiments are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.