Abstract

A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid–liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography–mass spectrometry (GC–MS). A two-stage multivariate optimization approach was developed by means of a Plackett–Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8μL; solvent type: tetrachloroethylene; sample volume, 12mL; centrifugation speed, 2300rpm; extraction temperature 20°C; extraction time, 3min; and centrifugation time, 3min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n=10). Limits of detection were 2 and 9ngL−1 for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25μgL−1 and 30ngL−1) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70–72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.