Abstract

Elastic wheels contain the chassis of airplanes, automobiles and other vehicles. Their tires interact with a solid supporting surface – roads and airfields. As a result of this interaction, only static friction, only sliding friction or a combination of them, depending on the mode of the wheel movement, can be present in the contact patch. The geometric dimensions and relative position of the different friction areas determine the stable, unstable or boundary movement of the elastic wheel. Purpose of work: calculation and measurement of geometric characteristics of static and sliding friction areas in the wheel-to-road contact. Determined that: the slip area appears on the longitudinal axis of the contact patch, at a distance from the center of the contact patch equal to 1/4 of the length of the contact patch, then it increases due to a decrease in the static friction area; the center of the static friction area in the contact patch moves toward the current moment by an amount proportional to the moment; the maximum displacement of the center of the static friction area corresponds to the moment maximum in terms of adhesion, and is 1/3 of the length of the contact patch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.