Abstract

A wedge loaded testing methodology to determine the fracture energy and strength of (semi-) brittle (metallo-)ceramics is presented. The methodology combines a tailored specimen geometry and a comprehensive finite element analysis based on cohesive zone modelling. The use of a simulation-based approach to extract both fracture strength and energy from experimental data avoids the inherent inaccuracies found in closed-form expressions that rely on a priori assumptions about the deformation field. Results from wedge splitting tests on Ti3SiC2 and Ti2AlC (MAX phase) materials are used to illustrate the procedure. The simulation-based approach is further validated by comparing the fracture strength and fracture energies predicted by the proposed method and those indicated by a conventional four-point bending fracture toughness test (ASTM standard). The new protocol offers the possibility to measure not only the fracture properties of brittle material in its pristine state but also in the healed state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.