Abstract

The fracture toughness in the fiber-matrix composite by means of the single fiber pull-out test can be achievable, if it is possible to measure the compliance of partial debonded fiber, which necessitates a stable crack propagation and the determination of the corresponding crack length. A combination of high stiff test equipment and a simultaneous monitoring of the photo-elastic pattern of the embedded fibers with the help of polarization microscope enables to measure crack length and determination of Gc [Hampe, A and Marotzke, C. (1997). The Energy Release Rate of the Fiber/Polymer Matrix Interface: Measurement and Theoretical Analysis, J. Reinf. Plast. and Compo., 16: 341-352.]. This method is well-known for glass fiber-amorphous polymer composite. In this investigation, we tried to implement the same technique to C-fiber with amorphous and semi-crystalline polymer composites. The energy release rate (ERR) of the fiber-matrix interface was evaluated for the carbon fiber-reinforced in polycarbonate (PC) by interfacial crack propagation arising in the single fiber pullout test. Further, the crack propagation at the fiber-matrix interface with different matrix morphology was discussed with the use of photo-elastic pattern observed with the aid of polarization microscope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call