Abstract

A methodology for accurate determination of energy released in a unipolar impulse dielectric barrier discharge is proposed and verified utilizing experimental data. In the experiments, the discharge was initiated in air under atmospheric pressure in a coaxial chamber with glass dielectric barrier located on the cathode by applying voltage pulses with the slew rate of $\sim 3~\cdot ~10^{11}$ V/s. It is shown that the energy released in the discharge is defined by the charge accumulated on the dielectric barrier before application of a successive voltage pulse and the magnitude of the remaining barrier voltage is dependent on many factors, in particular, repetition frequency of the discharge pulses, conditions and material of the barrier, impedance of the external electrical circuit, etc. It is demonstrated that the effective discharging of the barrier can be achieved by introducing a magnetic switch, which is essentially a nonlinear inductance connected in parallel to the discharge gap. The use of the switch allows for increasing the discharge efficiency in ~30% and provides a way for correct evaluations of its energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.