Abstract

Solid phase microextraction (SPME) is an ideal sample preparation technique because of its speed and solvent-free features. Sampling by SPME is selective and only the dissolved concentration is measured, which allows measurement of the bioavailable fraction of a contaminant in aqueous media. One potential application of SPME is for analysis of enantiomers of chiral contaminants in environmental samples. In this study, a method was developed for determining enantiomers of (Z)-cis-bifenthrin and cis-permethrin in water using coupled SPME and enantioselective gas chromatography (GC). Following SPME sampling, enantiomers of (Z)-cis-bifenthrin and cis-permethrin were separated at the baseline on a beta-cyclodextrin-based enantioselective column, and analyte enrichment onto the SPME fiber was not enantioselective. The GC response increased as sampling time was increased from 0 to 240 min, and as sampling temperature was increased from 20 to 40 degrees C. Organic solvents such as methanol, acetone, and acetonitrile enhanced, while soil extracts slightly decreased, the GC response. The integrated SPME-enantioselective GC method was used to analyze surface runoff samples. The analysis showed preferential degradation of the 1S-3S enantiomer over the 1R-3R enantiomer for both (Z)-cis-bifenthrin and cis-permethrin. The concentrations detected by SPME-GC were substantially smaller than those determined following solvent extraction, suggesting that SPME-enantioselective GC analysis selectively measured the dissolved fraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.