Abstract

Determination of hydrodynamic coefficients is a vital part of predicting the dynamic behavior of an Autonomous Underwater Vehicle (AUV). The aim of the present study was to determine the drag and lift related hydrodynamic coefficients of a research AUV, using Computational and Experimental Fluid Dynamics methods. Experimental tests were carried out at AUV speed of 1.5 m s-1 for two general cases: I. AUV without control surfaces (Hull) at various angles of attack in order to calculate Hull related hydrodynamic coefficients and II. AUV with control surfaces at zero angle of attack but in different stern angles to calculate hydrodynamic coefficients related to control surfaces. All the experiments carried out in a towing tank were also simulated by a commercial computational fluid dynamics (CFD) code. The hydrodynamic coefficients obtained from the numerical simulations were in close agreement with those obtained from the experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call