Abstract

Dilute nitride GaInNAs alloys grown on GaAs have become perspective materials for so called low-cost GaAs-based devices working within the optical wavelength range up to 1.6μm. The multilayer structures of GaInNAs/GaAs multi-quantum well (MQW) samples usually are analyzed by using high resolution X-ray diffraction (HRXRD) measurements. However, demands for precise structural characterization of the GaInNAs containing heterostructures requires taking into consideration all inhomogeneities of such structures. This paper describes some of the material challenges and progress in structural characterization of GaInNAs layers. A new algorithm for structural characterization of dilute nitrides which bounds contactless electro-reflectance (CER) or photo-reflectance (PR) measurements and HRXRD analysis results together with GaInNAs quantum well band diagram calculation is presented. The triple quantum well (3QW) GaInNAs/GaAs structures grown by atmospheric-pressure metalorganic vapor-phase epitaxy (AP-MOVPE) were investigated according to the proposed algorithm. Thanks to presented algorithm, more precise structural data including the nonuniformity in the growth direction of GaInNAs/GaAs QWs were achieved. Therefore, the proposed algorithm is mentioned as a nondestructive method for characterization of multicomponent inhomogeneous semiconductor structures with quantum wells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.