Abstract
Determination of indium and nitrogen content in InGaAsN quantum wells (QWs) is often based on the analysis of high-resolution X-ray diffraction (HRXRD) measurements. The comparison of diffraction curves of two similar samples, with and without nitrogen, together with an assumption of constant indium incorporation efficiency during the growth of layers with and without nitrogen, may lead to a large deviation in the determined In and N content. The HRXRD curve simulations supported by bandgap determination and calculations seem to be a solution of this problem. Comparison of the results achieved from simulated HRXRD curves with the calculations of all QWs transitions measured by contactless electro-reflectance (CER) can lead to reduction of deviations in composition determination of InGaAsN quantum wells. The proposed algorithm was applied for investigation of InGaAsN QWs grown by atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.