Abstract
AbstractBalloon sounding with the Compact Optical Backscatter Aerosol Detector (COBALD) and Frost Point hygrometers (FPs) provides in situ data for a better understanding of the vertical distribution of cirrus clouds. In this study, eight summer balloon‐borne measurements in Kunming (2012, 2014, 2015, and 2017) and Lhasa (2013, 2016, 2018, and 2020) over the Tibetan Plateau were used to show the distribution characteristics of cirrus clouds. Differences of cirrus occurrence were compared by different indices: the backscatter ratio (BSR) at a 455 nm/940 nm wavelength (BSR455 > 1.2/BSR940 > 2), the color index (CI > 7), and the relative humidity with respect to ice (RHice > 70%). Analysis of the profiles indicated that BSR455 > 1.2 was the optimal criterion to identify the cirrus layer and depict the distribution of the CI and RHice within cirrus clouds. The results showed that the median CI (RHice) within the cirrus clouds at both sites was mostly in the 18–20 (90%–110%) range at pressures below 120 hPa. Furthermore, the balloon‐borne measurements combined with Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements indicated a high frequency of cirrus occurrence near the tropopause in Kunming and Lhasa. The top height of cirrus occurrence at both sites was above the cold point tropopause and the lapse rate tropopause. Both Kunming and Lhasa had the highest frequency of thin cirrus clouds in the 0–0.4 km vertical cirrus thickness range.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have