Abstract
Solid polymer electrolytes are key components in many electrochemical devices. For an in-depth study of the basic parameters of such electrolytes, we developed a previously proposed method in order to determine the charge carrier density (n), mobility (μ), and diffusion coefficient (D) of ionic conductors using electrochemical impedance analysis. This reinforced method was tested with a composite solid electrolyte based on polyethylene oxide, ethylene carbonate, LiCF3SO3, and alumina filler by analyzing DC conductivity, frequency dependence of AC conductivity, and the complex dielectric function. The results show a clear picture of the temperature dependence of the parameters n, μ, and D; for example, at 20 °C, more than 15% of the total number of ions available in the electrolyte are mobile, and this value decreases with increasing temperature, most probably due to increased ion association in agreement with measurements using other techniques. The increase in ionic conductivity with increasing temperature is thus due to an increased mobility of the ionic species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have