Abstract

The hole transport property of a phenylamine-based compound, 4, 4′,4″-tris(n- (2-naphthyl)-n-phenyl-amino)-triphenylamine, was independently studied by time-of-flight (TOF), dark-injection space-charged-limited-current (DI-SCLC), and thin film transistor (TFT) techniques. With UV-ozone treated gold as the injecting anode, clear DI-SCLC transient peaks were observed over a wide range of electric fields. The hole mobilities evaluated by DI-SCLC experiment were in excellent agreement with the mobilities obtained from the TOF technique. The injection contact was demonstrated to be Ohmic by an independent current-voltage (J-V) experiment. However, with the same injecting electrode, the mobility deduced from the TFT method was found to be 9.8×10−7 cm2/V s, which was about one order of magnitude smaller than the TOF mobility (∼1.2 ×10−5 cm2/V s). The origin of the discrepancy is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.