Abstract
We describe how to use the thin-film transistor (TFT) technique to quantify carrier transport of amorphous organic semiconductors relevant to organic electronic devices. We have chosen several amorphous materials, including arylamine compounds, 4,4′-N,N′-dicarbazole-biphenyl (CBP), and a phosphorescent dye molecule [Ir(ppy)3] for investigations. Generally, the field effect (FE) mobility was found to be about one order of magnitude smaller than that obtained from an independent time-of-flight (TOF) technique. For N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) and N,N′-Bis(3-methylphenyl)-N,N′-bis(phenyl)-9,9-spirobifluorene (spiro-TPD), the FE mobilities were found to be 1.7×10−5 and 1.3 ×10−5cm2/Vs, respectively. Temperature-dependent measurements were carried out to study the FE mobility. It was found that the energetic disorder increased in the neighborhood of a gate dielectric layer. This factor is one of the origins causing the discrepancy between TFT and TOF mobilities. We also examined how the hole transport of CBP is affected by Ir(ppy)3 when it is doped into CBP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.