Abstract

The focus of this research is to apply the selected error function equation to establish the equilibrium isotherm model that best describes the adsorption of Pb2+ and Mn2+ onto acid-activated shale. Data collected from the batch experiment were analyzed using selected isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips and Redlich-Peterson). To compute the isotherm parameters used in choosing the best-fit isotherm model, selected non-linear error functions, namely, error sum of the square, normalized standard deviation, hybrid error function, root mean square error and Marquardt’s percent standard deviation were employed. From the scanning electron microscope results, it was observed that the surface characteristics of the shale change considerably with calcination and acid treatment but the acid-treated shale shows better uneven porous surface characteristics. Error function computation shows that the Dubinin-Radushkevich isotherm model had the least sum of normalized error of 0.3623 for Pb2+ adsorption and 0.5465 for Mn2+ adsorption; hence, it was selected as the best isotherm model for explaining the sorption of Pb(II) and Mn(II) ions unto acid-activated shale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.