Abstract

ABSTRACTIn this study, interelement interferences were evaluated for the determination of arsenic in aqueous samples through laser-induced breakdown spectroscopy (LIBS) hyphenated with a hydride generation sample introduction system. Optimum instrumental and chemical parameters were selected and variation in LIBS signal intensity was recorded for As solution in the presence of comparable concentrations of interfering elements. No significant change in the signal intensity of As(I) 228.8 nm line was observed in the presence of alkali/alkali earth metals; however, the presence of hydride-forming elements has shown a noticeable decrease in the line emission strength of arsenic. The least variation in arsenic signal was observed in the presence of Ge, the most volatile of all. However, the signal has decreased to a greater extent in the presence of Sn, Sb, and Pb. The presence of interfering elements on electron temperature and electron number density of arsenic plasma has also been studied. Plasma temperatures calculated using both As and Ar emission lines in the Boltzmann equation were similar, being around 5000 K. The McWhirter criterion for stationary and homogenous plasmas was utilized for the establishment of the local thermodynamic equilibrium under the plasma conditions studied. Applicability of the technique for multielemental analysis of water samples was tested through spiking experiments. Arsenic signal showed 26% decrease in the multielemental mixture solution. LIBS is among a few atomic spectroscopic techniques that facilitate rapid and simultaneous multielemental analysis without extensive sample preparation steps. However, the analytical performance of the technique still requires more serious efforts to compete with other conventional techniques for routine analysis of environmental samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.