Abstract
Mycophenolic acid (MPA) has being used clinically for organ rejection prophylaxis. Recent studies have revealed that MPA can also act as a chemo-sensitizing agent when used in combination with various chemotherapeutic agents in a cancer type-specific manner, including with oxaliplatin on oral squamous cell carcinoma (OSCC) cells. To prepare for the analysis of a novel drug delivery route for MPA absorption via oral mucosa as a potential therapeutic product, it is essential to develop and validate a highly sensitive analytical method for the quantification of MPA in biological samples for pharmacokinetic and tissue distribution studies. Herein, we report a sensitive, specific and reproducible UPLC-MS/MS method to do so. Blank rat plasma or tongue tissue homogenates coupled with griseofulvin, as internal standard, was used for generating standard curves ranging from 0.5 to 1000 ng/mL (r > 0.9990) for both plasma and tongue tissue homogenates. The chromatographic separation was achieved by a reverse phase ACE Excel 2 Super C18 column with a flow rate of 0.4 mL/min under gradient elution. Mass detection was performed under positive ionization electrospray. Inter- and intra-day accuracy and precision of the assay were ≤15% in both plasma and tongue tissue homogenates. The matrix effect was non-significant and extraction recovery rates were within 87.99% and 109.69% in plasma and tongue homogenates, respectively. The validity of this assay has been confirmed by measuring MPA in rat plasma for pharmacokinetics following intravenous administration of 0.5 mg/kg of mycophenolate sodium, as well as monitoring MPA in rat tongues for tissue distribution and detecting MPA that diffused into systemic circulation following a 4-h transmucosal delivery of 357 μg/cm2 of mycophenolate sodium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have