Abstract

The Shrinking Core Model (SCM) has been applied to determine and experimentally validate the reduction and reoxidation (redox) reaction kinetics of CuO in an in situ chemical looping combustion (CLC) process. This paper focuses on the determination of redox kinetics of CuO with one of the major coal gasification products i.e. carbon monoxide (CO) and air in a CLC process using a thermogravimetric analyzer (TGA). The comparison of the kinetic parameters of CuO obtained in CLC experiments, using CO and air as reducing and oxidizing atmosphere, respectively, with the predictions by the SCM model are also presented in this paper. The CuO particles are characterized in detail to obtain structural and elemental changes, due to their cyclic use in CLC experiments with CO/air, compared to the fresh particles. It has been observed that the reduction reaction control mechanism of SCM predicts very well the conversions of CuO during reduction in CO. However, the reoxidation of reduced CuO particles are governed by p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call