Abstract

The determinants of reduction of the dye MTT (3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) in rat hepatocytes have been investigated. NADH, NADPH, and succinate were substrates for MTT reduction in rat liver homogenate, activity being greatest with NADH and least with succinate. Similar results were obtained with submitochondrial particles isolated from rat liver. NAD(P)Hdependent reduction of MTT was also detected in rat liver microsomes and cytosol. Rotenone, at a concentration that inhibited NAD(P)H-dependent MTT reduction in submitochondrial particles, did not inhibit MTT reduction in rat hepatocytes. Malonate, at a concentration that inhibited succinate-dependent MTT reduction in liver homogenate, did not inhibit MTT reduction in rat hepatocytes. Incubation of rat hepatocytes with ethanol or lactate (increase NADH levels), dicoumarol (inhibitor of DT-diaphorase), aminopyrine or hexobarbitone (substrates for the NADPH-requiring cytochrome P450-dependent microsomal monooxygenase) led to significant increases in the level of cellular MTT reduction. From these data, it is concluded that extramitochondrial NAD(P)H is the principal reductant for MTT reduction in rat hepatocytes, with mitochondrial dehydrogenase activity being only a minor contributor. It is also possible that cellular generation of superoxide (as might be expected on redox cycling of endogenous quinones following inhibition of DT diaphorase by dicoumarol) may be another source of MTT reduction. Caution should be exercised in ascribing an alteration in the level of cellular MTT reduction to a change in mitochondrial performance in the absence of corroborating evidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.