Abstract

In this paper, the concept of determinants for the matrices over a commutative semiring is introduced, and a development of determinantal identities is presented. This includes a generalization of the Laplace and Binet–Cauchy Theorems, as well as on adjoint matrices. Also, the determinants and the adjoint matrices over a commutative difference-ordered semiring are discussed and some inequalities for the determinants and for the adjoint matrices are obtained. The main results in this paper generalize the corresponding results for matrices over commutative rings, for fuzzy matrices, for lattice matrices and for incline matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.