Abstract

BackgroundDeterminants of exercise intolerance in a phenotype of heart failure with preserved ejection fraction (HFpEF) with normal left ventricular (LV) structure have not been fully elucidated. MethodsCardiopulmonary exercise testing and exercise-stress echocardiography were performed in 44 HFpEF patients without LV hypertrophy. Exercise capacity was determined by peak oxygen consumption (peak VO2). Doppler-derived cardiac output (CO), transmitral E velocity, systolic (LV-s′) and early diastolic mitral annular velocities (e′), systolic pulmonary artery (PA) pressure (SPAP), tricuspid annular plane systolic excursion (TAPSE), and peak systolic right ventricular (RV) free wall velocity (RV-s′) were measured at rest and exercise. E/e′ and TAPSE/SPAP were used as an LV filling pressure parameter and RV-PA coupling, respectively. ResultsDuring exercise, CO, LV-s′, RV-s′, e′, and SPAP were significantly increased (p < 0.05 for all), whereas E/e′ remained unchanged and TAPSE/SPAP was significantly reduced (p < 0.001). SPAP was higher and TAPSE/SPAP was lower at peak exercise in patients showing lower-half peak VO2. In univariable analyses, LV-s′ (R = 0.35, p = 0.022), SPAP (R = −0.40, p = 0.008), RV-s′ (R = 0.47, p = 0.002), and TAPSE/SPAP (R = 0.42, p = 0.005) were significantly correlated with peak VO2. In multivariable analyses, not only SPAP, but also TAPSE/SPAP independently determined peak VO2 even after the adjustment for clinically relevant parameters. ConclusionsIn HFpEF patients without LV hypertrophy, altered RV-PA coupling by exercise could be associated with exercise intolerance, which might not be caused by elevated LV filling pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call