Abstract

Recent die-off of coastal forests has been attributed primarily to the effects of sea level rise by correlation with tide-gage records. Due to the temporal and spatial scales involved, direct monitoring of sea level rise impacts is challenging and its attribution can be confounded by both land-use history and species interactions. Here we present experimental evidence for a micro-tidal, oligohaline estuarine system that the location of coastal treeline is determined by both environmental controls and positive and negative species interactions. We conducted field surveys and a transplant experiment to determine the controls on pine seedling establishment and survival along a salinity and flooding gradient. Using a two-way changepoint model we determined that sawgrass cover (Cladium jamaicense) and salinity concentrations interact to control natural pine regeneration (Pinus taeda). The long-term removal of sawgrass resulted in increased soil salinity and high rates of (planted) pine seedling mortality. In contrast, pine seedlings planted directly under sawgrass were able to survive at the same level as upland forest plots because of reduced salinity levels. This research provides evidence that sawgrass can facilitate pine seedling survival, but also suggests that either competitive exclusion by sawgrass or dispersal limitations prevent initial pine seedling regeneration. We propose that forest dynamics are closely coupled to fire, which consumes sawgrass biomass and reduces competition between pine seedlings and grass. Following fire, pine seedling establishment and the regrowth of sawgrass facilitates long-term pine seedling survival. Under this scenario, recent marsh invasion into coastal forests may not necessarily represent a permanent state change in locations where abiotic stress is not the only determinant for community composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.