Abstract

The basalt-based reinforcing elements are considered as alternative to conventional steel-based reinforcing elements (rebars, wires). The motivation to use basalt-based elements (fibers, composite bars, meshes etc.) is better corrosion resistance of basalt fibers especially in sea-water environment, compared to carbon steel. Nevertheless, it does not mean that basalt fibers are 100% corrosion resistant. The basalt fibers are produced from silicate melt of proper composition, i.e. the basalt fibers are vulnerable to both acid and alkaline hydrolysis, as well as other silicates do. When basalt fibers are used as reinforcement in concrete, the alkaline hydrolysis will become an important issue. The present paper deals with experimental observation of basalt fibers in alkaline environment of Simulated Pore Solution. The fibers deterioration was monitored by their mass loss and SEM microscopy. Jander’s model was used to describe mathematically the kinetics of the fibers alkaline hydrolysis. The results revealed that a corrosion products layer is formed on the fibers surface in this environment. The composition of this layer corresponds to N-A-S-H and C-A-S-H phases known from alkali-activated aluminosilicates or hydrated Portland cement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call