Abstract

Despite the potentially destructive effect of sympathetic activity on bone metabolism, its impact on bone microarchitecture, a key determinant of bone quality, has not been thoroughly investigated. This study aims to evaluate the impact of sympathetic activity on bone microarchitecture and bone strength in patients with pheochromocytoma and paraganglioma (PPGL). A cross-sectional study was conducted in 38 PPGL patients (15 males and 23 females). Bone turnover markers serum procollagen type 1 N-terminal propeptide (P1NP) and β-carboxy-terminal crosslinked telopeptide of type 1 collagen (β-CTX) were measured. 24-h urinary adrenaline (24hUE) and 24-h urinary norepinephrine levels (24hUNE) were measured to indicate sympathetic activity. High-resolution peripheral quantitative computed tomography (HR-pQCT) was conducted to evaluate bone microarchitecture in PPGL patients and 76 age-, sex-matched healthy controls (30 males and 46 females). Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (DXA) simultaneously. PPGL patients had a higher level of β-CTX. HR-pQCT assessment revealed that PPGL patients had notably thinner and more sparse trabecular bone (decreased trabecular number and thickness with increased trabecular separation), significantly decreased volume BMD (vBMD), and bone strength at both the radius and tibia compared with healthy controls. The deterioration of Tt.vBMD, Tb.Sp, and Tb.1/N.SD was more pronounced in postmenopausal patients compared with the premenopausal subjects. Moreover, subjects in the highest 24hUNE quartile (Q4) showed markedly lower Tb.N and higher Tb.Sp and Tb.1/N.SD at the tibia than those in the lowest quartile (Q1). Age-related bone loss was also exacerbated in PPGL patients to a certain extent. PPGL patients had significantly deteriorated bone microarchitecture and strength, especially in the trabecular bone, with an increased bone resorption rate. Our findings provide clinical evidence that sympathetic overstimulation may serve as a secondary cause of osteoporosis, especially in subjects with increased sympathetic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call