Abstract
Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.