Abstract
The operation of accelerator-driven systems or spallation sources requires the monitoring of intense neutron fluxes, which may be billions-fold more intense than the fluxes obtained with usual radioactive sources. If a neutron detector is placed near a very intense source, it can become saturated because of detector dead time. On the contrary, if it is placed far away from the source, it will lose counting statistics. For this reason, there must exist an optimal position for placing the detector. The optimal position is defined as the one with the minimal relative uncertainty in the counting rate. In this work, we review the techniques to determine the detector dead time that can be applied with an accelerator-driven subcritical system or a spallation source. For the case of a spallation source, counting rates do not follow Poisson's statistics because of the multiplicity of the number of neutrons emitted by incident proton. It has been found a simple expression that relates the optimal counting rate with the source multiplicity and the uncertainty in the determination of the dead time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.